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ABSTRACT

In the conception and design of intelligent
systems, one promising direction involves the use of
fuzzy logic and neural network theory to enhance
such systems' capability to learn from experience
and adapt to changes in an environment of uncer-
tainty and imprecision. This paper explores an intel-
ligent control scheme by integrating these multi-
disciplinary techniques, A self-learning system is
proposed as an intelligent controller for dynamical
processes, employing a control policy which evolves
and improves automatically. One key component of
the intelligent system is a fuzzy logic-based system
which emulates human decision-making behavior.
Another key component is cognitive neural models
derived from animal learning theory, which stimu-
late memory association and learning behavior, It is
shown that the system can solve a fairly difficult
control learning problem. Simulation results
demonstrate that improved learning performance can
be achieved in relation to previously described sys-
tems employing bang-bang control. The proposed
system is relatively insensitive to variations in the
parameters of the system environment.

I. INTRODUCTION

During the past several years, a highly

promising direction in the design of intelligent sys-
tems has emerged. More specifically, the direction
in question involves the use of fuzzy logic and
neural network theory to enhance the ability of
intelligent systems that can learn from experience
and adapt to changes in an environment of uncer-
tainty and imprecision. This paper provides a brief
introduction o0 a fuzzy logic-based system [16][17]
and cognitive neural models [18][19], and explores

an intelligent control system by integrating these
multi-disciplinary techniques. The approach
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described here may be viewed as a step in the
development of a beuer understanding of how to
combine a fuzzy logic-based system with a neural
network to achieve a significant learning / adaptive
capability.

A. Why Fuzzy Logic Control?

There are many complex industrial processes
which cannot be satisfactorily controlled by conven-
tional methods due to modeling difficulties and una-
vailability of quantitative data regarding input-
output relations. And yet, skilled human operators
can control such systems quite successfully without
having any quantitative models in mind. Further-
more, the operation of many man-machine systems
requires the use of rules of thumb, intuition, and
heuristics. All of these features are uncertain and

imprecise and cannot be addressed adequately by
conventional methods. As the increasing complex-
ity and nonlinearity of control systems render con-
ventional methods less effective, a rule-based sys-
tem based on fuzzy logic becomes an increasingly
attractive alternative.

In fact, during the past several years, rule-
based controllers based on fuzzy logic [16][17] have
emerged as one of the most active and fruitful areas

for research in the application of fuzzy set theory
[34]. Among the representative applications of
fuzzy logic-based controllers are the subway system
in the city of Sendal [33], container ship crane con-
trol [32], elevator control [4][30], nuclear reactor
control [2][11], automobile transmission control
[23], air conditioners [22], anti-lock break systems
[24] and human'quality robot eyes [5]. Experience
shows that a rule-based controller using fuzzy logic
make it possible to emulate and even surpass the
decision-making ability of a skilled human operator.

Although there is an extensive literature

describing various fuzzy logic-based controllers
using approximate reasoning, the acquisition of the
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rule base in such controllers is not as yet well
understood, In past applications, fuzzy decision
rules are either obtained from verbal expressions or
observations of human operator control actions.
Since domain experts and skilled operators do not
structure their decision making in any formal way,
the process of transferring expert knowledge into a
usable knowledge base is tedious and unsystematic.
Our research aims at the development of a better
understanding of such problems, with a view to
enhancing the potential of fuzzy logic-based con-
trollers, which can operate effectively in an environ-
ment of uncertainty and imprecision.

One direction that is beginning to be explored
is that of the conception and design of fuzzy sys-
tems which have the capability to learn from experi-
ence. In this context, a combination of techniques
drawn from both fuzzy logic and neural network
theory may provide a powerful tool for the design
of intelligent systems which can emulate the

decision-making ability of a skilled human operator
and the ability to learn and adapt to changes in an
environment of uncertainty and imprecision.

B. Why Cognitive Neural Models?

The theory of animal learning is inferred from
observed behavior and constitutes carefully testified
postulates regarding elemental processes of learning.
Recent research into animal learning can be
separated into two categories: the behavioral and

neural substrates of learning, namely, the psycholog-
ical and physiological levels of learning. One way
to bridge such a gap is to postulate neural analogies
of behavioral modification paradigms. Hebb's postu-
late [9] for synaptic plasticity was the first trial as a
neural analogy of associative learning, which
attempted to bridge psychology and neurophysiol-
ogy. The theory of adaptive networks originated
with [9] and continues to be influenced by plausible
neural analogies of behavioral conditioning [6][12]
[7] [28] [26] [29][ 13][27] [14] [8] [15].

Contemporary artificial neural networks are
frequently referred to as connectionist models, paral-
lel distributed processing (PDP) models, and adap-
tive / self-organizing networks. Basically, it is a
complex system of neuron-like processing units that
operate asynchronously but in parallel and whose
function is determined by the network topology of
connectivity. Artificial neural n_tworks provide a
new computational structure, a plausible approach
for information processing because of its adaptivity /

learning as well as massive parallelism.

Although new learning algorithms and VLSI
technologies have recently provided strong impetus
to neural network research, many problems still
exist. Among them, the comprehensibility of neural
networks, theoretical parsimony / enormous cost,
and limited empirical successes are some of the
major issues underlying the limitations of current
neural networks. The learning behavior of such net-
works is difficult to understand, and the role of gen-
etic elements and subnetworks is unclear. Further-
more, most of these networks lack a theoretical

foundation. The time and effort required to develop
neural network architectures (network topology) and
training is very high. Research has been directed in
the main at "modeling applications", while relatively
few "fielded applications" have emerged [3]. Most
of such applications are restricted to pattern recogni-
tion, categorization, and realizations of associative

memory. They are still toy research problems at the
proof-of-concept stage. Among the few exceptions,
the Adaptive Channel Equalizer (developed by Ber-
nard Widrow) is perhaps the most commercially
successful of all neural network applications to date.
It is a single-neuron device used now in virtually all
long-distance telephone systems to stabilize voice
signals [3].

Klopf [13] has postulated that, "An intelligent
system will have to build on a foundation that

amounts to a highly detailed, immense microscopic
knowledge base, a knowledge base that can be inter-

faced effectively with higher functional levels."
From this perspective, a neural substrate could

develop into the microscopic knowledge base. The
macroscopic capabilities of intelligence could then
be built on top of this. Given the limitations of
current neural networks, a plausible scheme is to
incorporate capabilities previously found on the
macroscopic, network level into the microscopic,
neuronal (single-neuron) level.

In this connection, we introduce cognitive
single-neuron models that coincide with existing
animal learning theory. Each proposed model pro-
rides a basis for understanding and explaining
Pavlovian conditioning [25][20] and instrumental
conditioning [20], respectively, which areSe best
understood animal learning processes. In particular,

one model, an associady_e__c_n'_ti_c- neuron, captures the
predictive nature of Pavlovian conditioning, which
is essential to the theory of adaptive / learning sys-
tems. Another model, an associative learning neu-
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ron, possesses the associative nature of instrumental
conditioning, which stores in memory the temporal
relationship between input and output.

C. Outline

The problem of learning via credit assignment
[4] is described in Section II. The statement of the

pole-balancing problem follows. This problem may
be viewed as a canonical example of dynamic con-
trol. Some concepts from earlier related work are

given in Section III. They serve as a basis for com-
parison of previous and proposed approaches. The
proposed intelligent system is presented in Section
IV. Here, a fuzzy logic-based controller is intro-
duced, and a learning system with cognitive neural
models is proposed. Computer simulation results are
described in Section V. The paper closes with a
concluding remark in Section VI.

II. A CASE STUDY:
THE POLE BALANCING PROBLEM

In machine learning, the problem of learning
to control physical dynamical systems has been, and
remains, a challenging goal. In this context, the

credit-assignment problem is often encountered in
adaptive problem-solving systems, and is especially
acute when evaluative feedback is delayed or infre-
quent. Basically, the credit-assignment problem, is
to determine a strategy for assigning positive credit
(reward) to desirable actions and negative credit

(punishmen0 to undesirable actions in a way that
would lead to the achievement of a specific goal. In
what follows, we describe an approach to the build-
ing of an intelligent rule-based system that can learn
to control a dynamical system without prior
knowledge of its input-0utput relations.

Our approach focuses on a paradigmatic con-
trol problem- the pole-balancing problem - which
has been the object of several studies in the litera-
tures of control and neural networks. The pole

balancing system is described as follows. A rigid
pole is hinged to a cart, which is free to move on a
one-dimensional track. The pole can rotate in the

vertical plane of the track and the controller can
apply an impulsive force of bounded magnitude to
the cart at discrete time intervals. By balancing the
pole, we mean that the pole never deviates by more
than, say, 12 degrees, from the vertical. The equa-
tions of motion of the cart-pole system are not
known to the controller, which implies that the
cart-pole system is treated as a black box. What is

known is a vector describing the cart-pole system's
state at every time step. If the pole falls, it receives
a failure signal. After a failure signal has been
received, the system is reset to its initial state and a
new attempt is made. On the basis of this evaluative
feedback, the controller must develop its own con-
trol strategy and learn to balance the pole for as

long as possible. Since a failure signal usually
occurs only after a long sequence of individual con-
trol decisions, the sparsity of this signal makes the
credit-assignment problem nontrivial.

III. PREVIOUS RELATED WORK

There are two noteworthy previous studies

which have addressed the pole-balancing problem.
The first is that of Michie and Chambers [21] in
1968. They constructed a program called BOXES

that learned to balance the pole by applying two
opposite constant forces. The second study is that
of Barto, Sutton, and Anderson [1] in 1983, which
used neuronlike adaptive elements to solve the same
problem by using two constant forces. In general,
both approaches can handle the credit-assignment
problem that we mentioned. In both, the state space

is partitioned into several non-overlapping regions
and no symbolic reasoning techniques are employed.
Both are limited to only two control actions: push-
ing the cart left or right with a force of fixed magni-
tude. The problem is thus one of bang-bang control.

In contrast to these approaches, we attempt to
solve the problem through the use of symbolic

problem-solving techniques, employing a fuzzy
rule-based controller with approximate reasoning.
Furthermore, a continuous control scheme is

employed, namely, the controller can apply a force
with a magnitude within [-10,+10] newtons. In this

way, better performance of the controlled system
may be achieved but the complexity of the problem

is increased substantially. An overlapping partition
of the state space forms a linguistic space. The
overlapping partition enhances the speed of learning
and robustness. We will have more to say about
these issues at a later point.

IV. TIlE INTELLIGENT CONTROL SYSTEM

Experience shows that a fuzzy logic-based
system using approximate reasoning [16][!7] make
it possible to emulate and even surpass the
decision-making ability of a skilled human operator.
And, neural network theory [3] provide a new com-
putational structure, a plausible approach for infor-
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mation proCessing because of its adaptivity / learn-
ing as well as massive parallelism. In this connec-
tion, We developed an intelligent control scheme by
integrating human decision-making and animal
learning behavior employing fuzzy logic and neural
network theory.

i........................
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Fig. 1. Schematic representation of the intelligent
system.

As shown in Figure 1, one key component of the
intelligent system is a fuzzy logic-based controller
which emulates human decision-making behavior.

Another key component is a neural net. The net is
composed by two cognitive neural models, an asso-
ciative critic neuron (ACN) and an associative learn-

ing neuron (ALN), derived from animal learning
theory, which stimulate memory association and
learning behavior.

human decision-making behavior based on the prin-

ciples of approximate reasoning [35]. The
defuzzifier takes a fuzzy cQ_.ntroldecision from the
decision-making logic and determines a non-fuzzy
control action (F).

The learning capability of the intelligent sys-
tems is provided by the associative critic neuron
(ACN) and associative learning neuron (ALN).
More specifically, the ACN is derived by using
Pavlovian conditioning theory [25][20]. It captures

the predictive nature of Pavlovian conditioning and

has to do with criticism (_) from the environment

(r) associated with the system state (xi). The ACN
derives from the instrumental conditioning theory
[20]. It is an associative memory system, which
remembers the temporal relationships between input
(xi) and output (F), and associates each fuzzy con-
trol rule with an appropriate fuzzy control action
(Fi).

A. Fuzzy Logic Control

In recent years, rule-based controllers employ-
ing approximate reasoning have emerged as one of
the most active areas of research in the applications

of fuzzy set theory. Such reasoning [35] plays an
essential role in the remarkable human ability to
make rational decisions in an environment of uncer-

tainty and imprecision. In essence, approximate rea-
soning is the process or processes by which a possi-
bly imprecise conclusion is deduced from a collec-

tion of imprecise premises. By employing the tech-
niques of fuzzy set theory [34], approximate reason-
ing (with precise reasoning viewed as a limiting
case) can be studied in a formal way.

As a key component of the intelligent con-
troller, the fuzzy logic-based system provides a
linguistic description of control strategy. It is com-
posed by a rule base, a fuzzy decoder, decision-
making logic, and a defuzzifier. In general, the rule
base describes control strategy which has the form
of a collection of fuzzy control rules. For example,

if the angle of the pole is positive large and the
angular velocity is positive large, then the applied
force is positive large. These are implemented and
manipulated using fuzzy set theory [34] and are to
be learnt by the proposed neural net. The fuzzy
decoder inspects the incoming system state and fires
the rules in parallel. A set of faring strength (xi) is
then generated and serves as input for the decision-
making logic and neural net. The decision-making
logic, the inference engine of the system, emulates

The concept of a fuzzy set may be viewed as
an extension of an ordinary (crisp) set. In a fuzzy
set, an element can be a member of the set with a

degree of membership varying between 0 and 1.
Thus, a fuzzy set F in a universe U = {ui,
i=1 ..... n} is defined by its membership function
rte : U _ [0,1]. If the i.te(ui) are 0 or 1, the fuzzy
set is an ordinary set. As a special case, a fuzzy sin-
gleton is a fuzzy set containing just one element

with degree 1.
A concept which plays an important role in

the applications of the theory of fuzzy sets is that of
a linguistic variables. To illustrate, if speed is inter-
preted as a linguistic variable, that is, a variable
whose values are linguistic labels of fuzzy sets, then
the values of speed might be

T(speed) = {slow, moderate, fast,
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Fig. 2. Diagrammatic representation of various
linguistic values of speed.

very slow, more or less fast,... }.

In a particular context, slow may be interpreted as,
say, "a speed below about 40 mph", moderate as "a

speed close to 55 mph" and fast as "a speed above
about 70 mph". Figure 2 shows this interpretation in
the framework of fuzzy sets.

The set-theoretic operations on fuzzy sets are
defined via their membership functions. More
specifically, let A and B be two fuzzy sets in U
with membership functions laa and I_B, respectively.
The membership function I.tAvn of the union A uB
is defined pointwise for all u _ U by

laa_n (u) = max {tta(u),lae(u)}.

Dually, the membership function ]aa,-_ of the inter-
section A cwB is defined pointwise for all u _ U by

_tAr.a(u) = min {laa(u),l.tn(u)}.

If A l ..... A, are fuzzy sets in U1 ..... Un,

respectively, the Cartesian product of
A1 ..... A, is a fuzzy set in the product space
Ux× • • • ×U, with the membership function

_ta,x . . . xa, (ul,uz, " " ,u,) =

rain [laa_(ul), • • • J.ta,(u,,)}.

Assume that the fuzzy sets A, A', B, and B' are
the linguistic values of x and y. An example of
approximate reasoning involving x and y is the fol-
lowing:

premise 1 : x is A',

premise 2: if x. is A then y is B,

consequent: y is B',

For instance:

premise 1 : the speed of a car is very high,

premise 2 : if the speed of a car is high

then the probabili_ o.[ an accident is high.,

consequent: the probability of an accident

is very high.

This type of fuzzy inference is based on the compo-
sitional rule of inference for approximate reasoning
suggested by Zadeh [35].

A rule-based controller consists of a set of

fuzzy control rules which are processed through the

use of approximate reasoning. For simplicity, sup-
pose that we have the two rules:

R I : if x is A l and y is B l then z is C I,

or

R 2 : if x is A 2 and y is B z then z is C 2.

Approximate reasoning, given (x is A') and (y is
B'), computes the degree of partial match between

the user-supplied facts and the knowledge rule base
as follows.

The degrees of match of (Ai and A ) and (Bi and B)
are given respectively by

ai = max min{I.ta;(u), I.ta(u)},
U

13i= max min{l_n;(v), lan(v)}.
V

The firing strength of the irh rule is given by

xl = min[otl, 15,.}.

Hence, the i n_ rule recommends a control decision
as follows:

_tG,(w) = rain (xi, IJci(W)}.

The consequences of multiple rules can be com-
bined by a conflict-resolution process which treats
the sentence connective or as a union operator. The
combined consequence is then given by

lac (w) = max{I.tc;, I.tc_ }.

The combination of consequences is illustrated in
Figure 3.

In on-line processes, the states of a control

system are essential to a control decision (action).
The underlying data are usually obtained from sen-
sors and are crisp. It may be necessary to convert
these data into the form of fuzzy sets [16]. In prac-
rice, however, crisp data are frequently treated as
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Fig. 3. Diagrammatic representation of approximate
reasoning using fuzzy input.

Ri : if x is Ai and y is Bi then z is Ci,

i=1,2 ..... n ,

where x, y, and z are linguistic variables represent-
ing the angle of the pole with respect to the vertical

axis, angular velocity of the pole, and applied force,

respectively; Ai, Bi, and Ci are the linguistic values

(fuzzy sets) of the linguistic variables x, y, and z in

their respective universes of discourse, [-12,+12]

degrees, R, and [-10, +10] newtons. The definitions

of linguistic values Ai and Bi are shown in Figure 5

(a) and Co). The problem is to learn the linguistic

values Ci, which take the form of triangles, defined
on the control force universe [-10,+1(3] newtons.

The conception of fuzzification is performed as
shown in Figure 5 (c). The location of the vertex of

such a triangle is to be learned, while the coordi-
nates of the base are functions of the vertex location

value, say in the extreme case, +/-2 newtons away
from that vertex.

fuzzy singletons. In this case, the corresponding

inference mechanism is shown in Figure 4.

_., ,,u., #c,

', U" o : V rain w_

w

retching firing recommended conflict

mtr_ngth action nmoluflon
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Fig. 5. (a) Linguistic values of angle, Co) angular

velocity, and (c) applied force.

Fig. 4. Diagrammatic representation of approximate

reasoning using crisp input.

Furthermore, in on-line control, the inference pro-

cess should lead to a non-fuzzy control action. This
necessitates the use of a defuzzifier. A defuzzifier

can be implemented by using max criterion, mean of

maximum or center of area algorithms [17]. The
defuzzifier used here is employing the center of

area algorithm.

In what follows, the fuzzy control rules are

assumed to be of the form

To summarize the ideas thus far discussed, the

conception of a 2-D linguistic state space is formed.
The x axis is 0 with seven linguistic values; the y

axis is (} with three linguistic values. Thus, 8><4

fuzzy control rules are involved. Each fuzzy control
rule corresponds to a fuzzy cell. The premise of a

fuzzy control rule determines the cell's coordinates

in the linguistic state space. The consequent of the
rule is taken to be the content of the cell, which is

to be learned by the proposed neurons, the ALN and

ACN. Once a system input is sensed, the cells are

fired in parallel. The fuzzy decoder takes the

current state of the cart-pole system as an input and
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has n outputs (firing strengths) going to the ALN
and ACN. Each output of the fuzzy decoder

corresponds to a fuzzy cell. The activity of the out-
put is the firing strength. The firing strength serves
as an input to both the ALN and ACN, and is also
used to compute the recommended control action in
each rule (cell).

B. Learning with a Neural Net

As has been mentioned in Section II, the prin-

cipal difficulty in the learning process is that the
training information (failure signal) is very sparse.
Many of the previously employed neural networks
such as the Adaline, perceptrons, and Hopfield nets,
are effective for the solution of supervised pattern
classification problems. In contrast, our network
consists of the ACN and ALN which perform unsu-

pervised learning. The ACN has to do with the cri-
ticism from the environment associated with the sys-

tem state. The ALN takes the criticism and associ-
ates n fuzzy control actions with n fuzzy cells (the
consequents of n fuzzy control rules). Since the

ACN predicts the criticism at every time step, the
ALN can continuously update itself before the
failure signal occurs. This is the basis for the solu-
tion of the credit-assignment problem.

1. ACN

The ACN is derived from Pavlovian condi-

tioning theory [25][20]. The best known example of
Pavlovian conditioning comes from Pavlov's
research on the conditioned reflex of salivation by

dogs. Prior to conditioning, when a dog hears the
sound of a bell, it pricks its ears. Then, when the
food is presented to it, it salivates. If this sequence
of events is repeated, the dog soon starts to salivate
in reaction to the sound of the bell. In effect, the

dog has been "conditioned" to react to the bell. As
can be seen, the sound of a bell can be used to

predict the occurrence of salivation before the pres-
ence of food. This predictive relationship between
food and the sound of a bell has important implica-
tions. Thus, the ACN captures this predictive nature
of the Pavlovian conditioning.

The correspondence between Pavlovian condi-
tioning and the behavior of our system is as follows.
Food corresponds to the evaluative feedback (failure
signal). The salivation by reflex is equivalent to an
external reinforcement r(t) with the value -1.0 if
failure signal occurs, otherwise 0.0. The sound of a
bell relates to the i s fired fuzzy cell (fuzzy control

rule) with firing strength xi. The salivation resulting
from the bell's sound is the predictive reinforcement
vi(t) of the i s fuzzy cell. It is worth noting that, in
the extreme, the i s rule with firing strength either
1.0 or 0.0 is the exact case of presence or absence
of a bell's sound in the conditioning of a Pavlov

dog. In other words, our ACN operates in a continu-
ous mode, which treats Pavlovian conditioning as a

special case. In effect, the ACN attempts to predict
the reinforcement vi(t) that can eventually be

obtained from the environment by choosing a con-
trol action for that fuzzy cell.

As an extension of single-input/single-output
analogy, multiple inputs in the ACN necessitate an

output which is a weighted sum of the predictive
reinforcements of all fired fuzzy cells. The

weighted sum p(t) is the total reinforcement of all
fired fuzzy cells at time t. Furthermore, an internal

reinforcement _(t), the criticism, is generated as a
temporal difference of the total predictive reinforce-
ments.

As shown in Figure 1, the ACN has an exter-
nal reinforcement input, r (t), from the cart-pole sys-
tem, n inputs, xi(t), i=1 ..... n, from corresponding

fuzzy cells, and an output, "_(t), as internal rein-
forcement signal (criticism) for the ALN and itself.
The total reinforcement at time t is given by

p (t) = G (_vi (t)x_(t)),
i=I

where G could be a sigmoid-shaped function, iden-
tity function, mean of maximum algorithm or center
of area algorithm. The associative learning rule for
the i s fuzzy cell is in part characterized by a local
memory trace _(t) and the internal reinforcement

"_(t). The predictive reinforcement vi(t) of the i s
fuzzy cell (fuzzy control rule, fuzzy system state) is
updated by

vi(t+l) = vi(t) + _'_(t)_i (t),

where [3 is a positive learning-rate parameter. The
local memory trace is defined by

_(t+l) = kxq (t) + (1-_.)Ixi(t)vi (t)l,

where _., 0 _<k <1, is a trace-delay parameter. The
trace takes the form of an exponential curve. It is
'strengthened by the degree of firing strength of the
i s fuzzy cell (fuzzy control rule) together with its
current weight, and weakened if the rule is not fired.
The trace thus keeps track of how long ago the i s

fuzzy control rule fired and also how often it was
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fired. The internal reinforcement is calculated as

"_(t) = r (t ) + "_ (t ) - p (t-l),

where 7, 0 _<_,<1, is a discount-rate parameter. The
internal reinforcement serves as criticism, depending
on a relative difference of p(O and p(t-l). If the
pole does not fall and _(t)>p(t-1), then r(t)=O

and '_(t)>0, a reward is given. If the pole does not

fall and "tp(t )<p (t -1), then r(t)---O and '_(t)<0, and
a punishment is effected. The discount factor _,
implies a bias for the condition in which p (t) equals
p(t-1). More specifically, once the pole does not
fall and keeps in the same state, a reward is given

through the use of a discount factor. On the other
hand, if the pole falls, then p(t)=O, r(t)-_l and

_(t)<0, and a punishment is issued. If p(t-1) fully
predicts the occurrence of the failure, there is no
punishment. As shown, a negative feedback
mechanism is implicitly incorporated into the inter-
nal reinforcement.

The proposed ACN model might be viewed as
an extension of the Sutton-Barto model [18]. More

specifically, in the context of animal learning
phenomena, a sigmoid-shaped acquisition curve is
observed. This is not simulated in the Sutton-Barto

model. In our model, it can be achieved by making
a change in the associative strength proportional to
the current associative strength [18]. It has been
demonstrated by computer simulation that the ACN
accounts for many phenomena observed in Pavlo-
vian conditioning, such as a sigmoid-shaped acquisi-
tion curve, inter-stimulus interval effects, trace con-
ditioning, and delay conditioning. A more detailed
discussion of this aspect of our model is described
elsewhere [18].

2. ALN

The ALN is derived from the instrumental

conditioning theory [20]. A simple example is
teaching a dog to perform a trick, During training, if
the dog does well, it is given a reward. If not, it is
punished. After training, the dog has learned a new
trick. The association of the dog's response and
reinforcement has in effect been "conditioned". The

correspondence between this conditioning and the
ALN is as follows. A dog corresponds to the i a_

fuzzy control rule with firing strength x_. The
response of the dog relates to the control force
(wi,fi) of the i _h rule. The reinforcement as

reward/punishment is equivalent to the internal rein-
forcement from the ACN. The ALN does the fol-

lowing: the i _ fuzzy control rule can produce
correct control force of the i _ rule under the inter-

nal reinforcement from the ACN. In effect, the
ALN is a content-addressable memory system which
associates each fuzzy control rule with an appropri-
ate fuzzy control action.

As shown in Figure 1, the ALN has an inter-

nal reinforcement input, '_(t), from the ACN, n

inputs, xi(t), i=1 ..... n, from the fuzzy decoder, a
control action input, F(t), from the defuzzifer, and
n associative weights wi i=1 ..... n, as outputs for
the rule base. Each associative weight w_(t) is
transformed - by using the concepts of dynamical
normalization and fuzzification -- into a fuzzy set
having the form of a triangle as described in the
previous section. Symbolically,

Fi (t) = fuzzifier (f _(t)),

where fi (t) is the location of the vertex of the trian-
gle. It is given by

f_ (t) = H (wi (t) + noise (t)), i = 1..... n ,

where H is a dynamic sigmoid function which may
be viewed as a dynamic normalization function and

provides a continuous output within the range [-
10,+10]. For the purpose of computer simulation,

the following function is used:

lOx x>O,

r (7- x
H (x,t ) = E x=O,

10x

x<0.

where T(t)=klmax Iwi(t)l is an offset-tuning
t

parameter which determines the slope of the
sigmoid-shaped curve; and k l is a constant. The
associative learning rule for each wi (t) is

wi(t +l) = wi(t ) + i_i(t)_(t )ei(t ),

o_k2

_(t) = k2 +t"

where _ is a dynamical positive learning-rate
parameter with a initial value a and k2 is a weight-
freeze parameter. The weight-freeze parameter
determines the decreasing rate of the dynamical

learning rate _. '_(t) is the criticism from the ACN.
The associativity trace, ei(t), is given by

ei(t+l) = 8ei(t) + (l-8)F(t)xi(t),

where _i, 0 < _i <1, is another trace-decay parameter.

The associativity u'ace takes the form of an
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exponential and it remembers for how long and how
often a fuzzy control rule has fired as well as what
control action was taken at that time.

P(f)'n(Zv'(_)'"(r)) l'*[ ;cr)-r(t).,-'mtr. _p(_-l)

---_r(r,_l_(t)*(1_)lx, lt)v,(rH_

._..I,.c...,.11.x,.c,_.(1-_)r<t),,,)
w,(t.*l) - w,(tl-*._(t)t(t)*,(r) _bJ

6i ,_"

firing _ I / / combining

M"'engrhl_ m_on _1

Fig. 6. Signal flow of the intelligent control system•

Figure 6 illustrates the signal flow of our pro-
posed controller during a learning process. In prin-
ciple, once a system state is sensed, the set of fuzzy
control rules is fired in parallel. A set of firing
strengths (xl) is then generated and serves as input
to both ALN and ACN. The information about the

system state is then fed into the two neuronlike ele-
ments by the set of firing strengths. The firing
strength together with the predictive reinforcement
(vl, or desirability) of the i th fuzzy rule generates
the local memory trace (Ti, desirability trace) of the

i th fuzzy rule. The total reinforcement, p, or
equivalently, the desirability of all fired fuzzy cells,
is computed based on the firing strength and the
reinforcement (desirability) of each fuzzy rule. A

non-fuzzy control action, F, is determined after the
processes of inference combining and
defuzzification. The control action, F, together with

the fating strength, x,., of each rule contributes the
associativity trace, e_, of each rule. After applying
the control action to the plant, a goal evaluation, r,
is made, which takes binary values. Based on the

yes-no evaluation, the criticisfia, '_, which is a more
informative evaluation, is generated. It plays an
important role in the solution of the credit-
assignment problem. The weights (vi, wi) in learn-
ing rules are thus updated on the basis of the criti-
cism and their own local memory trace, (T_, el). A

rtl)

fuzzy control force in each rule is generated from

the wl by the use of dynamic normalization and
fuzzification.

V. SIMULATION RESULTS

We implemented our system on a Sun works-
tation. For comparison purposes, we also imple-
mented Barto's system [1] for solving the same

problem. The mass of the cart and initial pole were
1.0 kg and 0.1 kg, respectively. The length of the
pole was 1.0 meter. The parameter values used in
our simulation were: o.=1000, 17=0.5, "y=0.95, _=0.9,
L=0.8, e=0.1, kl=0.15, and k2=2500. A run was
called "success" whenever the number of steps
before failure was greater than 60,000. The external
reinforcement r(t) was -1 when the failure signal

occurred, otherwise, it was 0. Every _al began
with the same initial cart-pole states, 0=0, 0=0, x=0,
._=0, and ended with a failure signal when 101>12
degrees. All memory traces, x_ and e_, were set to
zero. All the weights, wi; were set to zero, and a
lower bound vi (=-0.0001) was set to all the
weights. In testing the performance of the system,
the simulator was run by applying the Adams

predictor-corrector method with a time step of 20
ms [19].
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119.

Fig. 7. _ed control surface based on the pro-
posed intelligent system with COA defuzzifier.

A. Learning /Training

The proposed controller and Barto's system
are capable of learning to balance the p01e. How-
ever, experiments show that our system has a better
learning performance [19]. The proposed Controller
learns to balance the pole by 6 trials with COA
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defuzzifier. Figure 7 illustrates the learned control
surfaces based on our intelligent system employing
defuzzifier center of area(COA). The performance
of Barto system, in average, took 27 trials to bal-
ance the pole [19].

Additional observations were made on the

state trajectory of the angle of the pole with respect
to the vertical axis. We observed the data after the

systems learned their own control strategy. The data
showed that, in every case, our controller could
keep the angle within a smaller region compared
with Barto's. Figure 8 illustrates one set of these
data from our system and Barto's, respectively.
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Fig. 8. (a) State performance of the pole angle based
on the proposed controller. (b) State perfor-
mance oi" the pole angle based on Barto's sys-
tem.

B. Adaptation

Adaptation is intended to adjust to unforeseen
changes in environmental conditions using prior
knowledge. Training involves constructing a
knowledge base of an application domain (e.g. a
pole-balancing task) with little a priori domain
knowledge. The capability of learning to solve new
tasks by modifying previous learned knowledge
(adaptation) is compared with that of starting from
scratch (training). Extensive simulation studies of
such schemes have been carried out. They show that
the proposed controller tolerates a wide range of
uncertainty as well as a lack of system information,
e.g., parameter changes in the length and mass of
the pole, changes of failure criteria, and a slanted
cart-pole system.

The adaptation experiments were based on
pre-leamed knowledge by employing the same
parameter settings as that in the last section. The
length and mass of the pole were 0.1kg and 1.0m,
the angle constraint for failure evaluation was
-/+12 °, and the initial value of the angle of the pole

with respect to the vertical axis is 0.0 °. The system
took 6 trials to learn the task.

In the first set of experiments, the system is
required to adapt to changes in the length and mass
of the pole. Six experiments were performed. The
first two were to increase the original mass of the
pole by a factor of 10 and 20, respectively. The
third and fourth ones were to change the original

length of the pole by a factor of 2 and 1/2, respec-
tively. The last two were to replace the original
pole by two shorter poles. The length and mass of
the first pole were reduced to 2/3 of the original
values, while the second one is 1/4. Without pre-

training, the system took 10, 15, 5, 11, 8 and 6 trials
to learn these tasks. However, with the pre-trained
knowledge, the system successfully completed these
tasks without any further trials. The result shows
the robustness of the proposed intelligent system.

In the second set, we added a more severe

constraint on the angle of the pole for failure
evaluation. The angle constraints were changed from
+/-i2 ° to +/-6 °, +/-3 °, and to +/-1 °, respectively.
The system needed 4 and 6 trials to learn the first
two tasks with no initial knowledge, but it failed in
the last task since a finer partition of input space is
required. While with pre-training, the system
adapted to all tasks without further trials.

In the third set, the system was required to
adapt to the changes in the length and mass of the
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pole (by a factor of 1/2) and angle constraint
(+/-3°). The training took 6 trials, while adaptation
can handle the new task well.

Finally, the cart-pole system was lifted at the
right end in such a way that the base of the system
and the surface of the table formed an angle of 12°.

The system took 10 trials to balance the pole. How-
ever, the system with the trained knowledge needed
no further trials to complete the new task.

VI. CONCLUDING REMARK

In this article, we have proposed a symbolic

problem-solving approach to a class of learning con-
trol problems. More specifically, we have attempted
to develop an intelligent control scheme by integrat-
ing human decision-making with a fuzzy logic-based

system and animal learning behavior with cognitive
neural models. The proposed intelligent control sys-
tem learns and improves its rule base for better con-
trol strategy from experience and adapts to changes
in an environment of uncertainty and imprecision. In

this way, we avoid an ad-hoc rule-tuning process
which is usually inefficient and lacking in con-
sistency. It has been shown that the proposed intelli-
gent system has a better performance of learning
speed and system behavior in relation to previous
approaches. Furthermore, the system is quite robust.
The controller is relatively insensitive to variations
in the parameters of the system environment, e.g., in
the context of pole-balancing, changes in the length
and mass of the pole, failure criteria, and slanting
the base of the cart-pole system. In addition, the
controller can be primed with pre-trained control

knowledge which minimizes rapid changes during
adaptation.

The approach described in this paper may be
viewed as a step in the development of a better
understanding of how to combine a fuzzy logic
based system with a neural network to achieve a
significant learning capability. We plan to address
various aspects of this important isStie in subsequent

papers.
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